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Abstract. The on-lattice ballistic chain-chain aggregation model is studied by Monte Carlo 
simulations in one, two and three dimensions. The chains move along the lattice directions, 
with a velocity proportional to k', for a k-mer. The fractal dimension of the large polymers 
and the mass distribution are computed for different values of the mobility exponent y. 
In two and three dimensions, a long preasymptotic behaviour is observed, and in all 
dimensions the asymptotic behaviour is in agreement with the Smoluchowski theory. 

1. Introduction 

Numerous experimental and theoretical works have been devoted recently to the 
formation of large aggregates from small particles (Friedlander 1977, Herrmann 1986, 
Jullien and Botet 1987, Meakin 1988). A case of particular interest is Brownian 
aggregation: the aggregates diffuse randomly and stick irreversibly when their reactive 
parts come into contact. From a set of particles, this process generates ramified clusters 
if sticking occurs at each contact (Meakin 1983, Kolb et a1 1983), and generates 
topologically linear chains if only the two end tips are reactive (Debierre and Turban 
1987a). In  both cases, the large aggregates have a fractal structure and the kinetics of 
reaction (Ziff et a1 1985, Debierre 1989) is well described by the mean-field 
Smoluchowski theory (Smoluchowski 1916). Ballistic aggregation was first introduced 
for particle-cluster aggregation (Vold 1963). In the case of cluster-cluster ballistic 
aggregation, the aggregates follow straight trajectories at constant speed and stick in 
accordance with the same rules as above when they collide. It  has been shown that 
the fractal dimension of ramified clusters is higher in this case (Ball and Jullien 1984), 
but very little is known about the kinetics of reaction. 

In this paper, we present the results of computer simulations on d-dimensional 
lattices (d  = 1,2,3) for the ballistic chain-chain aggregation model. In  d = 1, the 
chain-chain and cluster-cluster models are equivalent. The chains move along the 
lattice directions, with a velocity v ( k ) -  k Y  for a chain of mass k, and we investigate 
the influence of the mobility exponent y on the kinetics of aggregation. A similar 
study for the diffusion-limited version of chain-chain aggregation has already been 
published (Debierre and Turban 1988, Debierre et al 1989, hereafter referred to as I). 
As the two models exhibit a relatively similar behaviour, we only emphasise here the 
specific features of the ballistic case and refer the reader to I for more general 
information. 
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In section 2, we give a detailed description of the algorithm used for the simulations. 
The theoretical approach based on the dynamic scaling hypothesis and the 
Smoluchowski theory is reviewed in section 3. Finally, the numerical results are 
presented and  discussed in section 4. 

2. Computer simulations 

The simulations in d = 1 , 2  and  3 are performed on lo5 linear, 400 x 400 triangular and  
100 x 100 x 100 cubic lattices with periodic boundary conditions. At time t = 0, 
monomers are randomly distributed on non-adjacent lattice sites, ready to start with 
unit velocities, in randomly selected directions. The initial monomer concentration is 
respectively lo%, 2.5% and 1.5% in d = 1 ,2  and  3. At time t, reactions have occurred 
and  the sample contains monomers, dimers, trimers and  so on. All the N (  k, t )  chains 
of mass k (k-mers) perform a uniform linear motion with a n  average velocity 

U( k )  - kY. (1) 

As for the Brownian case (I) ,  we have varied the exponent y to observe a possible 
change of kinetics at  some value y c ,  and to determine the sticking exponent cp, for a 
reaction between two chains. The case y = -4 is of particular interest, each chain then 
having a velocity which corresponds to the average value for a Maxwell-Boltzmann 
distribution. Let us remark that there is no point in using a distribution of velocities, 
since momentum cannot be conserved on a lattice. 

To prevent them from overlapping, the chains are moved one at a time and, at 
each Monte Carlo step, a k-mer is chosen randomly with probability 

~ ( k ,  t )  = kY/Pmax (2) 
where 

is a normalisation coefficient. To directly select a chain with the desired probability, 
the following procedure is used in our simulations. The ensemble of the chains in the 
sample is represented by an  equivalent ensemble of adjacent segments. A segment of 
length k Y  is associated with a k-mer, so that the total length of the segments is p m r x .  
Thus, a random number evenly distributed in the interval [0, pm,J has a probability 
p(k, t )  of lying in the segment associated with a given chain of mass k. 

At each Monte Carlo step, the following operations are repeated. 
(i) Generate a random number in the interval [0, pmay] and select the chain associ- 

( i i )  Increment the physical time by Sr. As a k-mer is selected with a probability 
ated with this number. 

p (k ,  t )  and its jump frequency is proportional to k Y  (equation ( l ) ) ,  we have 

6t  = p ( k ,  t ) / k Y  = l /pmd,.  (4) 
(iii) Translate the selected chain by one lattice unit in its direction of motion. In 

case some lattice sites become doubly occupied, the chain is not moved and  the 
procedure starts from (i)  again. 

(iv) Examine the nearest-neighbour sites of the two chain tips successively. If the 
tip of another chain is found, make the two chains join. This last condition ensures 
that no closed loop is formed during a reaction. 
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This procedure is repeated until the final time has been reached. As it is not possible 
to conserve momentum on the lattice, a new direction of motion is randomly chosen 
for the chains involved in a reaction or a collision. Thus, after a collision, the chains 
may move away from each other. We have performed fifty simulations for several 
values of y in the intervals [ - 2 , 0 . 5 ]  in d = 1 and d = 3 ,  and [ - 3 ,  1 1  in d = 2 .  

3. Dynamic scaling and Smoluchowski theory 

To characterise the dynamical behaviour of our model, we have computed the mass 
distribution n(k, t ) ,  i.e. the concentrations of k-mers at different times. We expect 
n(k, t )  to be a solution of the Smoluchowski rate equation (Smoluchowski 1916) 

X 

( 5 )  
a n ( k ,  t )  1 

- 2 K ( i , j ) n ( i ,  t ) n ( j ,  t ) - n ( k ,  t )  K ( k ,  i ) n ( i ,  t ) .  
d t  2 ! + j = k  I = I  

This mean-field equation is valid at and above an  upper critical dimension d,. It has 
been conjectured (Toussaint and  Wilczek 1983, Kang and Redner 1984) that in the 
Brownian case, d,  = 2 for A + A += A and A + A + 0 reactions and an  extension of this 
argument for the ballistic A + A + 0 reactions gives d, = 1. However, it has been shown 
very recently (van Dongen 1989) that, for Brownian aggregation, d ,  = 2 is not always 
true. In  this case, d, depends on the details of the model and, for d <d,, the 
Smoluchowski approach breaks down at a characteristic time t D  after which the kinetics 
becomes that of diffusion-limited aggregation, independent of the initial model. As 
the ballistic case has not been discussed in this work, the mean-field approach will 
still be used here to analyse our data. 

For simple aggregation models, the reaction kernel K (  i, j )  is usually a homogeneous 
function, i.e. 

K ( ai, aj ) = a * K ( i ,  j ) ( 6 a )  

K ( i , j ) - i p j ”  i < < j  ( i > > l ) .  (6b)  

In this case, equation (5) admits solutions of the form 

n(k ,  t )  = t - ” g ( x )  ( 7 )  

t =  (8) 

where x = k / t ?  is the scaling variable. At large times, the mean chain mass t? varies as 
K - r l  I I - A I -  

and the dynamic exponent z is positive for non-gelling systems ( A  s 1 ). For x >> 1 ,  the 
scaling function g ( x )  decreases exponentially, and  for x << 1 three classes of kinetics 
are possible, according to the sign of p (van Dongen and  Ernst 1985): 

class I p > O  g ( x )  = Bx - T  . r = l + A  (9a  1 
class I1 p = O  g ( x )  = B x - ’  ~ < l + h  (96) 

class I 1 1  p < O  g ( x ) -  exp(-bxl-’) b > 0. ( 9 c )  

N (  t )  - t-’ class 111 or T <  1 ( l o a )  

N ( t ) - r - ”  7 >  1 ( l o b )  

It follows that the large-time behaviour of the total number of chains N (  t )  is given by 
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with 

w = (2  - T)Z. (11) 
In analogy with Brownian chain-chain aggregation ( I ) ,  one writes the reaction 

kernel for the ballistic case as 

K (i, j) - ( i * Y  + j*y)l/*(il/D+ j'/D)d-'h(i, j) (12) 
where h( i, j) is the sticking probability between an i-mer and a j-mer. The first factor 
is the root mean square relative velocity which replaces here the relative diffusion 
coefficient of the Brownian case (I). The second factor is an effective cross-section 
for collision which depends on the chain fractal dimension D :  two chains of radius 
RI - illD and Rj - j ' I D  occupy together a sphere of influence of volume V = ( R I  + RI )d  

with a cross section V'd-"'d. If we assume h(i , j)  to be a homogeneous function of 
degree -9, then the overall homogeneity degree of the kernel is 

A = y + ( d  - l)/D-cp (13) 
and, as a consequence of equation (8), the dynamic exponent z is related to the mobility 
exponent by 

(14) 2-l = [ I  - ( d  - 1 ) / D +  cp - 71. 

4. Discussion of the results 

The fractal dimension D ( d )  of the chains has been extracted from the radius of gyration 
data. In d = 1, the chains are obviously linear and D(1) = 1. In d = 2 and 3, the average 
values of the fractal dimension are respectively D(2) = 1.38 * 0.04 and D(3)  = 
1.68 * 0.05, the error bars resulting from small deviations of the estimates obtained for 
the different y. However, the variations of D with y do not appear to be systematic 
and we conclude that D is independent of y for the values considered here. The 
average D values are slightly higher than those of the self-avoiding walk model (: and 
$ respectively) and very close to those obtained in the case of Brownian (I) or 
free-reptation-limited (Debierre and Turban 1987b) aggregation. Thus, unlike for 
ramified clusters (Ball and Jullien 1984, Jullien 1984, Jullien and Kolb 1984, Meakin 
and Family 1987), the static properties of large chains appear to be unaffected by the 
nature of the motion they undergo. 

The asymptotic behaviour of the total number of chains N and the mean chain 
mass 6 predicted by equations (10) and (8) is effectively observed in our simulations. 
At large time, In N and In 6 become linear functions of In t and linear fits of the curves 
in figures 1 and 2 give the estimates of the dynamic exponent z listed in table 1. In 
d = 1, for O S  y s  0.25 we observe a behaviour of type (lob),  with w given in table 1, 
so that we expect r >  1 in this case. This may be checked by the small-x behaviour 
of the scaling function g(x)  which is plotted in figure 3, for a representative set of y 
values, in d = 1-3. In all dimensions, g (x)  is a monotically decreasing function for 
y z 0 ,  thus the kinetics is necessarily in class I or I1 and T is given by the slope of the 
left-hand part of the curves in figure 3. These estimates are listed in table 1 : as expected, 
in d = 1 we have T > 1 for y G 0.25 and the scaling law (1 1) is verified. We also note 
in table 1 that, for y 3 0, the condition T < 1 + A  (96) for class I1 kinetics which, using 
(8), becomes 

r +  2-' < 2 (15) 
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Figure 1. Log-log plot of the total number of chains 
N as a function of the time I ,  in ( a )  one, ( b )  two 
and ( c )  three dimensions. 

0 

l n  f 

Figure 2. Log-log plot of the mean chain mass as 
a function of the time f, in ( a )  one, ( b )  two and ( c )  l o  l 2  0 

Ln t three dimensions. 
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Figure 3. A log-log plot of the scaling function g(x) 
against the scaling variable x = k i f '  in ( a )  one, ( b )  
two and  ( c )  three dimensions.  For y 5 0, the slope 
on the left-hand side is -T .  

appears to be satisfied in all dimensions. Then, from equations (8) and (9b), we expect 
a class I1 kinetics with p = O .  

When y < 0, the scaling function g(x) is bell shaped (figure 3)  and we may have 
either a class I or II kinetics with 7 < 0 or a class I l l  kinetics. When i << j ( i  >> l ) ,  the 
asymptotic form of the sticking probability h ( i , j ) -  i " j p  inserted into equation (66) 
gives p = a + y. If we assume that, as for Brownian chain-chain aggregation (Debierre 
1989), h(  i, j )  is a non-increasing function of i and j ,  then a < 0 and  as a consequence 
p < 0, indicating a class 111 kinetics. 

In  conclusion, in d = 1-3 we conjecture a change from class I1 kinetics for y 2 0  
to class 111 kinetics for y < 0. This conjecture is in agreement with the Smoluchowski 
theory in one dimension: as in d = 1 each collision is effective, the sticking probability 
is equal to 1 and equations (12) and (66) give p = 0 for y 2 0  and p < O  for y<O. 
One possible reason why condition (15) is not always verified numerically in d = 1 
(see table 1 )  is the existence of logarithmic corrections to the asymptotic behaviour 
when d = d,. In  two and  three dimensions (figures 3( 6)  and 3(c)), the mass distribution 
for y = 0 is uniform ( 7  = 0) and  the change from polydispersity to monodispersity at 
y = 0 is smooth. On the contrary, this change is abrupt in one dimension (figure 3 ( a ) )  
since the distribution for y = 0 is not uniform ( T = 1.2). 

Finally we consider the variations of the dynamic exponent z with y. In one 
dimension, cp is zero because each collision is effective and  equation (14) reduces to 

(16) 

which is remarkably well verified by our numerical z values (figure 4(a) ) .  In higher 
dimensions, it is more difficult to accurately estimate the dynamic exponent z because 

z - '  = 1 - y 
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Table 1. The dynamic exponents : and 7 ,  for d = 1-3. The exponent H' is also indicated 
in brackets when T Z  1. From the Smoluchowski theory, a class I1 kinetics is predicted 
when T+ ; - I  < 2 and a class 111 kinetics for y <  0. 

d Y T ( W )  7 + : - '  Class 

1 -2.0 
-1.5 
-1.0 
-0.5 
-0.25 
-0.1 

0 
0.1 
0.25 
0.5 

2 -3.0 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 

0 
0.25 
0.5 
0.75 
1 .o 

0.33 
0.39 
0.49 
0.67 
0.79 
0.90 
0.96 
1.06 
1.23 
1.63 

0.22 
0.25 
0.28 
0.34 
0.41 
0.52 
0.60 
0.83 
1.1 
1.6 
1.8 

- 111 

1.2 (0.79) 2.24 1 1  
1.1 (0.98) 2.04 
1.0 ( 1.21) 1.81 
0.85 1.46 

0 
0.16 
0.54 
0.83 
0.94 

111 

1.67 11 
1.36 
1.45 
1.46 
1.50 

I 1 1  3 -2.0 0.30 - 
-1.5 0.35 - 
-1.0 0.44 - 

-0.75 0.49 - 
-0.5 0.57 - 

0 0.79 0 1.27 11 
0.5 1.39 0.76 1.48 

at short times a long preasymptotic regime is observed for the first moments of the 
distribution (figure 5 ) ,  whereas at long times the real asymptotic regime may be 
perturbed by a saturation effect due to the finite size of the underlying lattice. The 
reason is that at large times only a few chains are left in the sample and, if the majority 
of them move in the same direction, the reaction is drastically slowed down. This 
explains why we have chosen the triangular lattice for the simulations in d = 2, this 
saturation effect being less sensitive for a high coordination number. The variations 
of z - '  as a function of y in d = 2  and d 5 3 are displayed in figures 4(b)  and 4(c) 
respectively. We have also reported the data corresponding to the preasymptotic 
regime: these points appear to be aligned along directions of slopes -0.7 (d  = 2) and 
-0.8 ( d  = 3), but we have no justification for these values. On the other hand, the 
data for z-' in the asymptotic regime vary linearly with y (figures 4(b)  and 4(c)) with 
slopes -1.00 ( d  = 2 )  and -1.05 ( d  =3) ,  in agreement with the value -1 predicted by 
equation (14). From figures 4 ( b )  and 4 ( c )  we also extract the following estimates of 
the sticking exponent: 

( ~ ( 2 )  = 1.28k0.08 ( ~ ( 3 )  = 1.43 k0.05. 
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- L  -3 -2  -1 0 1 2 

II 

ic 1 

1 ’  

Figure 4. The inverse of the dynamic exponent z as 
a function of the mobility exponent y in ( a )  one, 
( b )  two and ( c )  three dimensions. The data corre- 
sponding to the (pre)asymptotic regime are represen- 
ted by crosses (open squares). In ( a )  z-’ = 1 - y 
(equation (16)) is drawn for comparison and in ( b )  -’” -15 -’ -’” O s  ’‘O and ( c )  the solid (broken) lines give the best fit of 

1.5 - 
1.0 L ’ 

T the (prejasymptotic regime. 

1-k 

C 

Ln t 
Figure 5. Ln E plotted against In t, for y = -1 in two dimensions. At short times, a 
preasymptotic regime with E -  t o  53 is ’ observed and the asymptotic behaviour E -  to4 ’  IS ’ 

only reached at very long times. 

The Sutherland ghost model (Ball and Witten 1984) was introduced to calculate 
the dimension of space d, above which ramified clusters become mutually transparent, 
as well as their fractal dimension D,. Extending this idea to the case of chains, one 
finds D, = 2 and d,  = 2 D, + d ,  = 5 (respectively, 6 )  for ballistic (respectively, Brownian) 
chain-chain aggregation. When d < d , ,  the transparency assumption can be used to 
obtain a lower limit for the sticking exponent rp. We consider two transparent chains 
of mass k and radius R - k’’D. in  the reference frame where one of them is at rest. 
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The moving chain has to perform N,- R steps to go through the target chain and, at 
each step, a reactive tip is encountered with a probability proportional to l / R d .  The 
sticking probability is then 

p ( k ) -  N , /Rd  -R'-"-k"' 'D (18) 

cp,(d) = ( d  - 1)/D 

and we find the sticking exponent 

(19) 

for transparent chains. In  the actual simulations, the chains bounce (or stick) when 
they meet and  the transparency assumption is not correct, but it becomes more and  
more realistic as d is increased, since the chains can interpenetrate more and more 
freely. Using the D values given above, we obtain ( ~ ~ ( 2 )  = 0.72i0.02 and q ( 3 )  = 
1.19 * 0.04, to be compared to the simulation results (equation (17)). 

The agreement of our  simulation data with the mean-field theory predictions seems 
to justify a posteriori the assumption that d, = 1 for ballistic chain-chain aggregation. 
A more physical approach to this phenomenon would need off-lattice simulations, 
with a velocity distribution for each species (k-mer). Moreover, since the reactions 
between the chains have to be described in terms of inelastic collisions, it would also 
be necessary to take into account the deformation of the chains. Performing simulations 
that meet all these requirements is presently a hopeless task. 
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